I B.Tech - I Semester - Regular / Supplementary Examinations December - 2016

DISCRETE MATHEMATICS
 (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Construct the truth table of NOR gate.
b) Use De Morgan's laws to write the negation of statement, "You study or you don't get a good grade."
c) Explain law of syllogism with an example.
d) Draw the Peterson's K_{5} graph.
e) Draw the Hasse diagram of the positive divisors of 16 .
f) Distinguish between cycle and circuit.
g) Write the Euler's formula for planar graph.
h) Explain Pigeons' Principle.
i) Explain the relation between $C(n, r)$ and $P(n, r)$.
j) Find the number of seating arrangement of 10 people around a round table.
k) Express the sequence $\left\{1,2^{1}, 2^{2}, 2^{3}, 2^{4}, \ldots\right\}$ as generating function.
PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2. a) Construct a truth table for $[(p \wedge q) \vee \neg r] \leftrightarrow p$. 8 M
b) Find the Disjunctive Normal Form (DNF) and Conjunctive Normal Form (CNF) of the following expression. 8 M

$$
\neg[(\neg \mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{r}]
$$

3. a) Using Mathematical Induction, prove that $\left(3^{2 n}-1\right)$ is divisible by 8 for every $n \geq 1$.
b) For a, b e \mathbb{Z}, define $a R b$ if and only if $a^{2}-b^{2}$ is divisible by 3. Then prove that R defines an equivalence relation on \mathbb{Z}. 8 M
4. a) Define with examples:

Equivalence Relation, Compatible relation and Partial Order Relation
b) Determine whether the given graph has an Euler circuit or an Euler path and construct such a path if one exists.

10 M

5. a) In a sample of 100 logic chips, 23 have a defect type $D_{1}, 26$ have a defect type $D_{2}, 30$ have a defect type $D_{3}, 7$ have defects types D_{1} and $D_{2}, 8$ have defects types D_{2} and D_{3} and 3 have all three types of defects. Find the number of chips having:
i) At least one defect
ii) No defects
b) Prove the identity: $C(n, r-1)+C(n, r)=C(n+1, r) . \quad 8 M$
6. a) Find the coefficient of $x^{5} y^{9}$ in the expansion of $(2 x-5 y)^{14}$.
b) Solve the following recurrence relation:

$$
a_{n}-3 a_{n-2}+2 a_{n-3}=0, n \geq 3, \& a_{0}=1, a_{1}=a_{2}=0
$$

